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W Newton’s Laws

1. Law (law of inertia):

A body, which no forces act upon, continues to move with
constant velocity.

= A resting body is just a special case of this law.

2. Law (law of action):

/

-

If a force F acts on a body with mass m , then the body
accelerates, and its acceleration is given by
F=m-a

/

= |n other words: force and acceleration are proportional to each other;
(the proportionality factor happens to be m). In aprticular, both force

and acceleration have the same direction.
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3. Law (law of reaction):

If a force F, that acts on a body, is extended to another body,

Then the opposite force —F acts on that other body.

= |n school, you learn: "action= reaction"

4. Law (law of superposition):
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If a number offorces Fq, ..

can be accumulated by
force:

., Fp act on a point or body, then they
vector addition yielding one resulting

F=F+..+F,. )
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Historical Digression

= Newton published these laws in his
original book

Principia Mathematica
(1687):

= Lex |. Corpus omne perseverare in statu
suo quiescendi vel movendi uniformiter
in directum, nisi quatenus illud a
viribus impressis cogitur statum suum
mutare.

= Lex Il. Mutationem motus
proportionalem esse vi motrici
impressae, et fieri secundum lineam
rectam qua vis illa imprimitur.
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= Definition:
A spring-mass-system is a system, consisting of:
1. A set of point masses m; with positions x; and velocities v;,i=1...N;

2. Asetofsprings sjj = (i, j, ks, ka) , where s;; connects
masses i und j, with rest length lp , spring constant ks (= stiffness) and the
damping coeffizient ky

= Advantages:

= Very easy to program

= |deally suited to study different kinds of solving methods

= Ubiquitous in games (cloths, capes, sometimes also for deformable objects)
= Disadvantages:

= Some parameters (in particular the spring constants) are not obvious, i.e.,
difficult to derive

= No volumetric effects (e.g., preservation of volume)
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U ASingle Spring (plus Damper)

= Given: masses m; and m; with positions x; , X;

" Let Fij = / : L . {,
HXJ o XiH I','/'
= The force between particlesiand; : fil }
s £
. e——
1. Force extended by spring: \\VVVVVVV\
N m kS m/
/- Ly — x| — I N
£y = kstij([lxj = xill = lo) o o -
acts on mass m; in direction of m; l
kg

2. Force extended by damper : fi — kd((Vj — Vi)'rij)rij
3. Sum of forces : £/ — fJ f(’;{'

4. Forceon m; : fil = —fU

G. Zachmann Virtual Reality & Simulation WS  December 2012 Mass-Spring-Systems 6



eeeee

Y Bl
= Notice: (4) — the momentum is preserved

= Momentum = force x mass= F-m
= Note on terminology:

= German "KraftstoR" = English "Impulse" = force x time

= German "Impuls" = English "momentum" =force x mass

1% — xill — Lo

= Alternative Federkraft: fY = k.r;;

lo

= A spring-damper element in reality:
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U  Simulation of a Single Spring

= From Newton’s law, we have: X = %f

= Convert differential equation (DE) of order 2 into DE of order 1:
W(t) = Lf(1)
x(t) =wv(t)

= |nitial values (boundary values): v(ty) =vo, X(ty) = Xg

= "Simulation" = "Integration of DE's over time"

= By Taylor expansion we get:
x(t + At) = x(t) + At x(t) + O(At?)

" Analogeously: v (t + At) = v(t) + At v(t)

—> This integration scheme is called explicit Euler integration
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The Algorithm

forall particles i
initialize x;, v;, m;

Loop forever:
forall particles i

fi— FE+F+ Y (x5, vi %), V)

Jir(ij)es
forall particles i
f.
vi += At-—
m;
X; += At'V,'

render system every n-th time

f9g

= gravitational force

f o/l = penalty force exerted by collision (e.g., with obstacles)
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= Advantages:
= Can be implemented very easily

= Fast execution per time step

= Disadvantages:
= Stable only for very small time steps
- Typically At = 104 ...1073 sec!

= With large time steps, additional energy is generated "out of thin air",
until the system explodes ©

= Example: overshooting when simulating a single spring

= Errors accumulate quickly
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Example for the Instability of Euler Integration

= Consider the diferential equation

x(t) = —kx(t)

= The exact solution:

X(t) — X0 e_kt

= Euler integration does this:

x"t = xt + At(—kx")
" Case At > % :

x"h = x' (1 — kAt)

\ . J/

N

<0

= x!t oscillates about 0, but approaches 0 (hopefully)

'CaseAt>%: = xl — oo |
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" pen
"

= Visualization:

position

L

time

= Terminology: if k is large — the DE is called "stiff "
= The stiffer the DE, the smaller At has to be

G. Zachmann Virtual Reality & Simulation WS  December 2012 Mass-Spring-Systems 12



eeeeee

K £
@ Visualization of Error Accumulation P

= Consider this DE:

= Exact solution:

= The solution by Euler integration
moves in spirals outward, no

matter how small At!

= Conclusion: Euler integration
accumulates errors, no matter

how small At!
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Visualization of Differential Equations

= The general form of a DE:
x(t) = f(x(t),t)

= Visualization of f as a vector field:

= Notice: this vector field can vary over time!

= Solution of a boundary value problem = path through this field
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= Runge-Kutta of order 2:

= |dea: approximate f( x(t), t) by a quadratic function that is defined at
positions x(t), x( t+ %2At ) and v(f)

= The integrator (w/o proof):

a; =v' a; = lf(xt, vh)
m
bl = Vt + 1Ataz b2 = lf(Xt + lAtal, Vt + 1Atag)
2 m 2 2
x1 = xt + Atb;, vitt = vt + Atb,

= Runge-Kutta of order 4:

= The standard integrator among the explicit integration schemata

= Needs 4 function evaluations (i.e., force computations) per time step

= Order of convergence is: e(At) = O(At?)
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= Runge-Kutta of order 2:

Y
/ —
=
h2 | n2 X
Xn Xn+]

= Runge-Kutta of order 4:
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Verlet Integration

= A general, alternative method to increase the order of
convergence: utilizes values from history

= Verlet: utilize x(t-At)
= Derivation:

= Develop The taylor series in both time directions:

x(t + At) = x(t) + Atx(t) + %Atzii(t) - %At3')'('(t) + 0(At?)

x(t — At) = x(t) — Atx(t) + %Atzi(t) — %At3')'('(t) + 0(At?Y)
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= Add both:
x(t + At) + x(t — At) = 2x(t) + At” %(t) + O(At*)

x(t + At) = 2x(t) — x(t — At) + At” %(t) + O(At?)

" |nitialization:

x(At) = x(0) + Atv(0) + %At2(if(x(0), v(0)))

m

= Remark: the velocity does not occur an more (explicitely)
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W  Constraints -

VR %

= Big advantage of Verlet over Euler & Runge-Kutta:
it is very easy to handle constraints

= Definition: Constraint = some condition on position of one or
more mass points

= Examples:

1. A point must not penetrate an obstacle

2. The distance between two points must be constant,

or distance must be < some specific distance
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= Examples:

= Consider the constraint:

|
X1 — %2l = lo

1. Perform one Verlet integration step — %!*!

2. Enforce the constraint: d

d
I_H I_H
o---4 ---9
X1 lO )?2
1
t+1 _ gt+1 ~t+1 ot+1
X1 =X +5"12'(HX2 — % | = lo)
1
t+1 _ ot+l Sst+1  st+ly
Xy =X —§r12-(||x2 — %1 ZO)
d
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= Problem: if several constraints are to constrain the same mass
point, we need to employ constraint algorithms
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